|) VR W A AR R
USOORE3&8104E
asy United States

a2 Reissued Patent (10) Patent Number: US RE38,104 E

Gosling 5) Date of Reissued Patent: Apr. 29, 2003
(54) METHOD AND APPARATUS FOR 5347632 A 9/1994 Filepp et al.
RESOLVING DATA REFERENCES IN 5428792 A 6/1995 Conner et al.

GENERATED CODE (List continued on next page.)

(75) Inventor: James Gosling, Redwood City, CA OTHER PUBLICATIONS

Us
(US) Adele Goldberg and David Robson, “Smalltalk—80-The

(73) Assignee: Sun Microsystems, Inc., Palo Alto, CA ~ Language and its Implementation”, Xerox Palo Alto
(US) Research Center, 1983 (reprinted with corrections, Jul.

1985) pp. 1-720.

(*) Notice: ;Flt;llin Eitent is subject to a terminal dis- (List continued on next page.)
Primary Examiner—Thomas M. Heckler
(21) Appl. No.: 09/261,970 (74) Attorney, Agent, or Firm—Finnegan, Henderson,
(22) Filed: Mar. 3, 1999 Farabow, Garrett & Dunner, L.L.P.
57 ABSTRACT
Related U.S. Patent Documents
Reissue of: A hybrid compiler-interpreter comprising a compiler for
(64) Patent No.: 5,367,685 “compiling” source program code, and an interpreter for
Issued: Nov. 22, 1994 interpreting the “compiled” code, is provided to a computer
Appl. No.: 07/994,655 system. The compiler comprises a code generator that gen-
Filed: Dec. 22, 1992 erates code in intermediate form with data references made
on a symbolic basis. The interpreter comprises a main
(51) TNt CL7 oo GOGF 9/45 interpretation routine, and two data reference handling
(52) US.Cl oo 717/140; 717/106; 717/136; "oulines, a dynamic field reference routine for handling

symbolic references, and a static field reference routine for
handling numeric references. The dynamic field reference
routine, when invoked, resolves a symbolic reference and
rewrites the symbolic reference into a numeric reference.

717/139; 717/142; 717/146
(58) Field of Searchcccccoccoecenenneee 717/2, 5,17, 8,
717/106-108, 114, 116, 146147

(56) References Cited After re-writing, the dypamlc ﬁ?ld ref.erence routine returns
to the main interpretation routine without advancing pro-
U.S. PATENT DOCUMENTS gram execution to the next instruction, thereby allowing the
4636940 A * 1/1987 Goodwin, Jr. .ooovvvvve....... 7174~ [eWrilten instruction with numeric reference to be reex-
4667290 A 5/1987 Goss et al. ecuted. The static field reference routine, when invoked,
4667920 A * 5/1987 Goss et al. ..ooovocoee.. 248/610 Obtain data for the program from a data object based on the
4,686,623 A * 81987 Wallace ... numeric reference. After obtaining data, the static field
4,729,096 A * 3/1988 Larson reference routine advances program execution to the next
4,773,007 A * 9/1988 Kanada et al. instruction before returning to the interpretation routine. The
5,200,050 A * 4/1993 McKeeman et al. .. main interpretation routine selectively invokes the two data
5,230,050 A * 7/1993 Titsuka et al. reference handling routines depending on whether the data
5,276,881 A 1/1994 Chan et al. reference in an interaction in a symbolic or a numeric
5280,613 A 1/1994 Chan et al. reference
5,307,492 A * 4/1994 Bensoncccccceeen ’
5,313,614 A * 5/1994 Goettelmann et al.
5,339,419 A 8/1994 Chan et al. 31 Claims, 5 Drawing Sheets
SOURCE
CODE —52
‘ 44
L
LEXICAL 42
ANALYZER
& PARSER 54
TOKENIZED
« | STATEMENTS
AR 4
INTERMEDIATE
REPRESENTATION
BUILDER s
| INTERMES1ATE
48 [REPRESENTATION
SEMANTIC
ANALYSER 8
ANNOTATED
~_—INTERMEDIATE
50 4 REPRESENTATION

US RE38,104 E
Page 2

U.S. PATENT DOCUMENTS

54427771 A 8/1995 Filepp et al.

5,594910 A 1/1997 Filepp et al.

5,613,117 A * 3/1997 Davidson et al. 717/8
5649204 A 7/1997 Pickett

5,758,072 A 5/1998 Filepp et al.

5836014 A * 11/1998 Faiman, JT. cooevveercrerenn 7177

OTHER PUBLICATIONS

Andrew Black, Norman Hutchinson, Eric Jul and Henry
Levy, “Distribution and Abstract Types in Emerald”, Uni-
versity of Washington, Technical Report No. 85-08-05,
Aug. 1985, pp. 1-10.

Andrew Black, Norman Hutchinson, Eric Jul, and Henry
Levy, “Object Structure in the Emerald System”, University
of Washington, Technical Report 86—04-03, Apr. 1986, pp.
1-14.

Andrew Blaine Proudfoot, “Replects: data replication in the
Eden System”, Department of Computer Science, Univer-
sity of Washington, Technical Report No. TR—-85-12-04,
Dec. 1985, pp. 1-156.

Andrew P. Black and Henry M. Levy, “A Language for
Distributed Programming”, Department of Computer Sci-
ence, University of Washington, Technical Report
86-02-03, Feb. 1986, p. 10.

Andrew P. Black, “Supporting Distributed Applications:
Experience with Eden”, Department of Computer Science,
University of Washington, Technical Report 85-03-02, Mar.
1985, pp. 1-21.

Andrew P. Black, “The Eden Programming Language”,
Department of Computer Science, FR-35, University of
Washington, Technical Report 85-09-01, Sep. 1985
(Revised, Dec. 1985), pp. 1-19.

Andrew P. Black, “The Eden Project: Overview and Expe-
riences”, Department of Computer Science, University of
Washington, EUUG, Autumn 86 Conference Proceedings,
Manchester, UK, Sep. 22-25 1986, pp. 177-189.

Andrew P. Black, Edward D. Lazowska, Jerre D. Noe and
Jan Sanislo, “The Eden Project: A Final Report”, Depart-
ment of Computer Science, University of Washington, Tech-
nical Report 86-11-01, Nov. 1986, pp. 1-28.

Calton Pu, “Replication and Nested Transactions in the Eden
Distributed System”, Doctoral Disseration, University of
Washington, Aug. 6, 1986, pp. 1-179 (1 page Vita).

Cara Holman and Guy Almes, “The Eden Shared Calendar
System”, Department of Computer Science, FR—35, Univer-
sity of Washington, Technical Report 85-05-02, Jun. 22,
1985, pp. 1-14.

Eric Jul, “Object Mobility in a Distributed Object—Oriented
System”, a Dissertation, University of Washington, 1989,
pp. 1-154 (1 page Vita).

Eric Jul, Henry Levy, Norman Hutchinson, and Andrew
Black, “Fine—Grained Mobility in the Emerald System”,
University of Washington, ACM Transactions on Computer
Systems, vol. 6, No. 1, Feb. 1988, pp. 109-133.

Felix Samson Hsu, “Reimplementing Remote Procedure
Calls”, University of Washington, Thesis Mar. 22, 1985, pp.
1-106.

Guy Almes, Andrew Black, Carl Bunje and Douglas Wiebe,
“Edmas: Alocally Distributed Mail System”, Department of
Computer Science, University of Washington, Technical
Report 83-87-01, Jul. 7, 1983, Abstract & pp. 1-17.

Guy T. Almes, “Integration and Distribution in the Eden
System”, Department of Computer Science, University of
Washington, Technical Report 83-01-02, Jan. 19, 1983, pp.
1-18 & Abstract.

Guy T. Almes, “The Evolution of th Eden Invocation
Mechanism”, Department of Computer Science, University
of Washington, Technical Report 83-01-03, Jan. 19, 1983,
pp- 1-14 & Abstract.

Guy T. Almes, Andrew P. Black, Edward D. Lazawska, and
Jerre D. Noe, “The Eden System: A Technical Review”,
Department of Computer Science, University of Washing-
ton, Technical Report 83—10-05, Oct. 1983, pp. 1-25.
Guy T. Almes, Michael J. Fischer, Hellmut Golde, Edward
D. Lazawska, Jerre D. Noe, “Research in Integrated Dis-
tributed Computing”, Department of Computer Science,
University of Washington, Oct. 1979, pp. 1-42.

Krasner et al., “Smalltalk—80: Bits of History, Words of
Advice”, 1983 Xerox Corporation, pp. 1-344.

Norman C. Hutchinson, “Emerald: An Object—Based Lan-
guage for Distributed Programming”, a Dissertation, Uni-
versity of Washington, 1987, pp. 1-107.

Proceedings of the Eighth Symposium on Operating Sys-
tems Principles, Dec. 14-16, 1981, ACM, Special Interest
Group on Operating Systems, Association for Computing
Machinery, vol. 15, No. 5, Dec. 1981, ACM Order No.
534810.

Wm. A. Wulf, “PQCC: A Machine—Relative Compiler Tech-
nology,” Carnegie—Mellon University, Pittsburgh, PA, Sep.
1980, pp. 1-22.

Inder—jeet S. Gujral, “Retargetable Code Generation for
ADA* Compilers”, SoftTech, Inc., Waltham, MA, Dec.,
1981, pp. 1-13.

Nori et al,, “The Pascal <P> Compiler: Implementation
Notes”, Jul. 1976, pp. 1-53.

Glanville et al., “A New Method for Compiler Code Gen-
eration (Extended Abstract)”, Computer Science Division,
University of California, Berkeley, CA, pp. 231-240.
Colusa Software White Paper: “Omniware Technical Over-
view”, Colusa Software, Inc., 1995, pp. 1-14.

Colusa Software White Paper: Omniware: A Universal Sub-
strate for Mobile Code: Colusa Software, Inc., pp. 1-13.
Ali-Reza Adl-Tabatabai et al., “Efficient and Language—
Independent Mobile Programs”, Proceedings of PLDI *96,
ACM SIGPLAN °’96 Conf. on Programming Language
Design and Implementation, May, 1996, pp. 1-10.

Lucco et al., “Omniware: A Universal Substrate for Web
Programming”, pp. 1-11.

Wahbe et al., “Efficient Software—Based Fault Isolation”,
Computer Science Division, University of California, Ber-
keley, CA, pp. 203-216.

Graham et al., “Adaptable Binary Programs™, 1995 Usenix
Technical Conference—Jan., 1995, New Orleans, LA, pp.
315-325.

Steven Lucco, “High—Performance Microkernel Systems”,
School of Computer Science, Carengie Mellon University.
p- 1.

Sawdon et al., “A Preliminary Report on Software Prefetch-
ing in the Instruction Stream”, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, pp. 1-7.
Bolosky, et al., “Operating System Directions for the Next
Millennium”, Microsoft Research, Redmond, WA, pp. 1-7.
1995 Project Summaries: “Software System Support for
High Performance Multicomputing”, School of Computer
Science, Carnegie Mellon University, Jul. 1995, pp. 1-4.

US RE38,104 E
Page 3

Ernst et al., “Code Compression”, 1997, pp. 358-365.
Peter Deutsch et al., “Efficient Implementation of the Small-
talk—80 System”, 1983, pp. 297-302.

Engelstad et al., “A Dynamic C-Based Object—Oriented
System for UNIX”, IEEE Software, May, 1991, pp. 73-85.
Gerring, et al., “S—1 U-Code, A Universal P-Code for the
S—1 Project (PAIL-6)”, Stanford University, Computer Sci-
ence Department, Technical Note No. 159, Aug., 1979, pp.
1-7.

Gary McWilliams, “Digital’s Architectural Gamble”, Data-
mation, Mar., 1989, pp. 14-24.

“Architecture—Neutral Distribution Format”, Open Software
Foundation, Cambridge, MA, pp. 1-3.

Wolf et al., “Portable Compiler Eases Problems of Software
Migration”, System Design/Software, pp. 147-153.
Fischer et al., “Crafting a Compiler”, 1988, pp. 551-555,
632-641.

Anklam et al., “Engineering a Compiler, VAX-11 Code
Generation and Optimization”, 1982 Digital Equipment
Corporation, pp. 124-137.

Tanenbaum et al., “A Practical Tool Kit for Making Portable
Compilers”, Computing Practices, Communications of the
ACM, Sep., 1983, vol. 26, No. 9, pp. 654-660.

Almasi et al., “Highly Parallel Computing”, pp. 247-277.
Ann Sussman, “OSF Eyes Shrink—Wrap RFT”, Unix Today,
pp- 1, 43.

Evan Grossman, “OSF Adds Ingredients to Operating Sys-
tem”, PC Week, Mar. 27, 1989.

Sites et al.,, Universal P-Code Definition, Version 0.3,
Department of Electrical Engineering and Computer Sci-
ences, University of California at San Diego, Jul. 1979, pp.
5-9.

Goldberg et al., “Smalltalk—80: The Language and Its Imple-
mentation”, Addison—Wesley, Reading, MA, 1983, pp.
594-598.

Richard L. Sites and Daniel R. Perkins, “Universal P-Code
Definition, version (0.3),” Dept. of Electrical Engineering
and Computer Sciences, University of California at San
Diego, Jul., 1979, pp. 1-40.

Richard L. Sites et al., “Machine—Independent Pascal Opti-
mizer Project,” UCSD/CS-79/038, Nov. 1979, pp. 1-94.

Peter Nye, U-CODE: An Intermediate Language for Pascal
and Fortran (PAIL-8), Feb. 16, 1980, pp. 1-37-2.

Chung, Kin—-Man and Yuen, Herbert, “A ‘Tiny’ Pascal
Compiler: the P—Code Interpreter,” BYTE Publications,
Inc., Sep. 1978.

Chung, Kin—-Man and Yuen, Herbert, “A ‘Tiny’ Pascal
Compiler: Part 2: The P—Compiler,” BYTE Publications,
Inc., Oct. 1978.

Thompson, Ken, “Regular Expression Search Algorithm,”
Communications of the ACM, vol. II, No. 6, p. 149 et seq.,
Jun. 1968.

Mitchell, James G., Maybury, William, and Sweet, Richard,
Mesa Language Manual, Xerox Corporation.

McDaniel, Gene, “An Analysis of a Mesa Instruction Set,”
Xerox Corporation, May 1982.

Pier, Kenneth A., “A Retrospective on the Dorado, A High—
Performance Personal Computer,” Xerox Corporation, Aug.
1983.

Pier, Kenneth A., “A Retrospective on the Dorado, A High—
Performance Personal Computer,” IEEE Conference Pro-
ceedings, The 10th Annual International Symposium on
Computer Architecture, 1983.

Goldberg, Adele and Robson, David, “Smalltalk—80: The
Language,” ParcPlace Systems and Xerox PARC, Addison—
Wesley Publishing Company, 1989, Chap. 21, pp. 417-442.

Budd, Timothy, “A Little Smalltalk,” Oregon State Univer-
sity, Addison—Wesley Publishing Company, 1987, Chap. 13,
pp. 150-160, Chapter 14, pp. 161-175, Chapter 15, pp.
176-192.

Krasner, Glenn, “The Smalltalk—80 Virtual Machine” BYTE
Publications Inc., Aug. 1991, pp. 300-320.

Engelstad, Steve, et al., “A Dynamic C-Based Object—Ori-
ented System for Unix,” Software, May 1991, pp. 73-85.
Deutsch, L. Peter, et al., “Efficient Implementation of the
Smartalk—80 System,” Conference Record of the Eleventh
Annual ACM Symposium on Principles of Programming
Languages, Jan. 15-18, 1984, pp. 297-302.

* cited by examiner

U.S. Patent Apr. 29, 2003 Sheet 1 of 5 US RE38,104 E

INSTRUCTION
SEQUENCE 0%‘};31‘31.
10
¢ SLOT 1= 23 }r
* SLOT2=17)
14
N LOAD 2 o
NUMERIC
° REFERENCE o
® ®
Figure 1A
Prior Art
INSTRUCTION
SEQUENCE Rty
10
¢ x"=23 &
° g 17 /12
14’
T LoaD’y SYMBOLIC °
REFERENCE
® °
® ®
Figure 1B

Prior Art

U.S. Patent Apr. 29, 2003 Sheet 2 of 5 US RE38,104 E

30 28
7z
INPUT/ .26 fe—p
OUTPUT Vo -26 STORAGES
DEVICES
I] CPU -22 r
MEMORY - 24
20
NETWORK - 32
Figure 2
40
APPLICATION /
COMPILER - /33
INTERPRETER 34
36
OPERATING SYSTEM |/

Figure 3

US RE38,104 E

Sheet 3 of 5

Apr. 29, 2003

U.S. Patent

09

I
AA0D LOIALHO

WHO4 -

LLVIGINYALNI

G aunsy

JONTHIATY
I

89

NOILLVINISTIdTY 9g
<4— ALVIQIWYIALNI
JA4.LVLONNYV

NOLLVINASTIdIH

JIamng
LLVICIWYALLNI

7
| 4

U.S. Patent Apr. 29, 2003 Sheet 4 of 5 US RE38,104 E

OPERATOR
IMPLEMENTATIONS

ADD /
72 76
IP

82 - o pg—"| INTERPRETATION [———#~

ROUTINE
STATIC FIELD /78

REFERENCE (SFR)

Flg ure 6 DYNAMIC FIELD | 89
REFERENCE (DFR) [~
o
o
o
BYTE CODE = | ..
REFERENCE |-

MAIN: MAIN: 90
STATIC REF INVOKE DYNAMIC V/
? FIELD REF
94
/ v 84
MAIN;:
INVOKE STATIC DFR: REWRITE 92
FIELD REF SYMBOLICREF |,
* IN OBJECT
SFR: OBTAIN 9%
DATA y/

Y

SFR: CURRENT /98
INSTR = NEXT INSTR

TURN TO MAIN |- 100

(SFR/DFR: Figure 7
RE

U.S. Patent Apr. 29, 2003 Sheet 5 of 5 US RE38,104 E

INSTRUCTION DATA
SEQUENCE OBJECT
"o 10°
° SLOT1='x =23) 4
- 12"
“\r L0AD><'2 :
SYMBOLIC
REFERENCE i
. REWRITTEN
AS NUMERIC
REFERENCE
®

Figure 8

US RE38,104 E

1

METHOD AND APPARATUS FOR
RESOLVING DATA REFERENCES IN
GENERATED CODE

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissue.

This is a continuation of reissue application Ser. No.
08/755,764, filed Nov. 21, 1996, now U.S. Pat. Re. No.
36,204, which is incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to the field of computer
systems, in particular, programming language compilers and
interpreters of these computer systems. More specifically,
the present invention relates to resolving references in
compiler generated object code.

2. Background

The implementation of modern programming languages,
including object oriented programming languages, are gen-
erally grouped into two categories: compiled and inter-
preted.

In a compiled programming language, a computer pro-
gram (called a compiler) compiles the source program and
generates executable code for a specific computer architec-
ture. References to data in the generated code are resolved
prior to execution based on the layout of the data objects that
the program deals with, thereby, allowing the executable
code to reference data by their locations. For example,
consider a program that deals with a point data object
containing two variables X and y, representing the X and y
coordinates of a point, and further assume that the variables
x and y are assigned slots 1 and 2 respectively, in each
instance of the point data object. Thus, an instruction that
accesses or fetches y, such as the Load instruction 14
illustrated in FIG. 1, is resolved to reference the variable y
by the assigned slot 2 before the instruction sequence is
executed. Particular examples of programming language
compilers that generate code and resolve data references in
the manner described above include C and C++ compilers.

This “compiled” approach presents problems when a
program is constructed in pieces, which happens frequently
under object oriented programming. For example, a program
may be constructed from a library and a main program. If a
change is made to the library, such that the layout of one of
the data objects it implements is changed, then clients of that
library, like the main program, need to be recompiled.
Continuing the preceding example, if the point data object
had a new field added at the beginning called name, which
contains the name of the point, then the variables x and y
could be reassigned to slots 2 and 3. Existing programs
compiled assuming that the variables x and y and are in slots
1 and 2 will have to be recompiled for them to execute
correctly.

In an interpreted language, a computer program (called a
translator) translates the source statements of a program into
some intermediate form, typically independent of any com-
puter instruction set. References to data in the intermediate
form are not fully resolved before execution based on the
layout of the data objects that the program deals with.
Instead, references to data are made on a symbolic basis.
Thus, an instruction that accesses or fetches y, such as the
Load instruction 14' illustrated in FIG. 1, references the
variable y by the symbolic name “y”. The program in

10

15

20

25

30

35

40

45

50

55

60

65

2

intermediate form is executed by another program (called an
interpreter) which scans through the code in intermediate
form, and performs the indicated actions. Each of the
symbolic references is resolved during execution each time
the instruction comprising the symbolic reference is inter-
preted. A particular example of a programming language
interpreter that translates source code into intermediate form
code and references data in the manner described above is
the BASIC interpreter.

The “interpreted” approach avoids the problems encoun-
tered with the “compiled” approach, when a program is
constructed in pieces. However, because of the extra level of
interpretation at execution time, each time an instruction
comprising a symbolic reference is interpreted, execution is
slowed significantly.

Thus, it is desirable if programming languages can be
implemented in a manner that provides the execution per-
formance of the “compiled” approach, and at the same time,
the flexibility of the “interpreted” approach for altering data
objects, without requiring the compiled programs to be
recompiled. As will be disclosed, the present invention
provides a method and apparatus for resolving data refer-
ences in compiler generated object code that achieves the
desired results.

SUMMARY OF THE INVENTION

A method and apparatus for generating executable code
and resolving data references in the generated code is
disclosed. The method and apparatus provides execution
performance substantially similar to the traditional compiled
approach, as well as the flexibility of altering data objects
like the traditional interpreted approach. The method and
apparatus has particular application to implementing object
oriented programming languages in computer systems.

Under the present invention, a hybrid compiler-interpreter
comprising a compiler for “compiling” source program
code, and an interpreter for interpreting the “compiled”
code, is provided to a computer system. The compiler
comprises a code generator that generates code in interme-
diate form with data references made on a symbolic basis.
The interpreter comprises a main interpretation routine, and
two data reference handling routines, a static field reference
routine for handling numeric references and a dynamic field
reference routine for handling symbolic references. The
dynamic field reference routine, when invoked, resolves a
symbolic reference and rewrites the symbolic reference into
a numeric reference. After rewriting, the dynamic field
reference routine returns to the interpreter without advanc-
ing program execution to the next instruction, thereby allow-
ing the rewritten instruction with numeric reference to be
reexecuted. The static field reference routine, when invoked,
obtain data for the program from a data object based on the
numeric reference. After obtaining data, the static field
reference routine advances program execution to the next
instruction before returning to the interpreter. The main
interpretation routine selectively invokes the two data ref-
erence handling routines depending on whether the data
reference in an instruction is a symbolic or a numeric
reference.

As a result, the “compiled” intermediate form object code
of a program achieves execution performance substantially
similar to that of the traditional compiled object code, and
yet it has the flexibility of not having to be recompiled when
the data objects it deals with are altered like that of the
traditional translated code, since data reference resolution is
performed at the first execution of a generated instruction
comprising a data reference.

US RE38,104 E

3
BRIEF DESCRIPTION OF THE DRAWINGS

The objects, features, and advantages of the present
invention will be apparent from the following detailed
description of the presently preferred and alternate embodi-
ments of the invention with references to the drawings in
which:

FIG. 1 shows the prior art compiled approach and the
prior art interpreted approach to resolving data reference.

FIG. 2 illustrates an exemplary computer system incor-
porated with the teachings of the present invention.

FIG. 3 illustrates the software elements of the exemplary
computer system of FIG. 2.

FIG. 4 illustrates one embodiment of the compiler of the
hybrid compiler-interpreter of the present invention.

FIG. 5 illustrates one embodiment of the code generator
of the compiler of FIG. 4.

FIG. 6 illustrates one embodiment of the interpreter and
operator implementations of the hybrid compiler-interpreter
of the present invention.

FIG. 7 illustrates the cooperative operation flows of the
main interpretation routine, the static field reference routine
and the dynamic field reference routine of the present
invention.

FIG. 8 illustrates an exemplary resolution and rewriting of
a data reference under the present invention.

DETAILED DESCRIPTION PRESENTLY
PREFERRED AND ALTERNATE
EMBODIMENTS

A method and apparatus for generating executable code
and resolving data references in the generated code is
disclosed. The method and apparatus provides execution
performance substantially similar to the traditional compiled
approach, as well as the flexibility of altering data objects
like the traditional interpreted approach. The method and
apparatus has particular application to implementing object
oriented programming languages. In the following descrip-
tion for purposes of explanation, specific numbers, materials
and configurations are set forth in order to provide a thor-
ough understanding of the present invention. However, it
will be apparent to one skilled in the art that the present
invention may be practiced without the specific details. In
other instances, well known systems are shown in diagram-
matical or block diagram form in order not to obscure the
present invention unnecessarily.

Referring now to FIGS. 2 and 3, two block diagrams
illustrating an exemplary computer system incorporated
with the teachings of the present invention are shown. As
shown in FIG. 2, the exemplary computer system 20 com-
prises a central processing unit (CPU) 22, a memory 24, and
an I/O module 26. Additionally, the exemplary computer
system 20 also comprises a number of input/output devices
30 and a number of storage devices 28. The CPU 22 is
coupled to the memory 24 and the I/O module 26. The
input/output devices 30, and the storage devices 28 are also
coupled to the I/O module 26. The I/O module 26 in turn is
coupled to a network 32.

Except for the manner they are used to practice the present
invention, the CPU 22, the memory 24, the I/O module 26,
the input/output devices 30, and the storage devices 28, are
intended to represent a broad category of these hardware
elements found in most computer systems. The constitutions
and basic functions of these elements are well known and
will not be further described here.

10

15

20

25

30

35

40

45

50

55

60

65

4

As shown in FIG. 3, the software elements of the exem-
plary computer system of FIG. 2 comprises an operating
system 36, a hybrid compiler-interpreter 38 incorporated
with the teachings of the present invention, and applications
compiled and interpreted using the hybrid compiler-
interpreter 38. The operating system 36 and t he applications
40 are intended to represent a broad categories of these
software elements found in many computer systems. The
constitutions and basic functions of these elements are also
well known and will not be described further. The hybrid
compiler-interpreter 38 will be described in further detail
below with references to the remaining figures.

Referring now to FIGS. 4 and 5, two block diagrams
illustrating the compiler of the hybrid compiler-interpreter
of the present invention are shown. Shown in FIG. 4 is one
embodiment of the compiler 42 comprising a lexical ana-
lyzer and parser 44, an intermediate representation builder
46, a semantic analyzer 48, and a code generator 50. These
elements are sequentially coupled to each other. Together,
they transform program source code 52 into tokenized
statements 54, intermediate representations 56, annotated
intermediate representations 58, and ultimately intermediate
form code 60 with data references made on a symbolic basis.
The lexical analyzer and parser 44, the intermediate repre-
sentation builder 46, and the semantic analyzer 48, are
intended to represent a broad category of these elements
found in most compilers. The constitutions and basic func-
tions of these elements are well known and will not be
otherwise described further here. Similarly, a variety of well
known tokens, intermediate representations, annotations,
and intermediate forms may also be used to practice the
present invention.

As shown in FIG. 5, the code generator 50 comprises a
main code generation routine 62, a number of complimen-
tary operator specific code generation routines for handling
the various operators, such as the ADD and the IF code
generation routines, 64 and 66, and a data reference handling
routine 68. Except for the fact that generated coded 60 are
in intermediate form and the data references in the generated
code are made on a symbolic basis, the main code generation
routine 62, the operator specific code generation routines,
e.g. 64 and 66, and the data reference handling routine 68,
are intended to represent a broad category of these elements
found in most compilers. The constitutions and basic func-
tions of these elements are well known and will not be
otherwise described further here.

For further descriptions on various parsers, intermediate
representation builders, semantic analyzers, and code
generators, see A. V. Aho, R. Sethi, and J. D. Ullman,
Compilers Principles, Techniques and Tools. Addision-
Wesley, 1986, pp. 25-388, and 463-512.

Referring now to FIGS. 6 and 7, two block diagrams
illustrating one embodiment of the interpreter of the hybrid
compiler-interpreter of the present invention and its opera-
tion flow for handling data references is shown. As shown in
FIG. 6, the interpreter 70 comprises a main interpretation
routine 72, a number of complimentary operator specific
interpretations routines, such as the ADD and the IF inter-
pretation routines, 74 and 76, and two data reference inter-
pretation routines, a static field reference routine (SFR) and
a dynamic field reference routine (DFR), 78 and 80. The
main interpreter routine 72 receives the byte codes 82 of the
intermediate form object code as inputs, and interprets them,
invoking the operator specific interpretations routines, e.g.
74 and 76, and the data reference routines, 78 and 80, as
necessary. Except for the dynamic field reference routine 80,
and the manner in which the main interpretation routine 72

US RE38,104 E

5

and the state field reference routine 78 cooperates with the
dynamic field reference routine 80 to handle data references,
the main interpretation routine 72, the operator specific
interpretation routines, e.g. 74 and 76, and the static field
reference routine 78, are intended to represent a broad
category of these elements found in most compilers and
interpreters. The constitutions and basic functions of these
elements are well known and will not be otherwise described
further here.

As shown in FIG. 7, upon receiving a data reference byte
code, block 86, the main interpretation routine determines if
the data reference is static, i.e. numeric, or dynamic, i.e.
symbolic, block 88. If the data reference is a symbolic
reference, branch 88b, the main interpretation routine
invokes the dynamic field reference routine, block 90. Upon
invocation, the dynamic field reference routine resolves the
symbolic reference, and rewrites the symbolic reference in
the intermediate form object code as a numeric reference,
block 92. Upon rewriting the data reference in the object
code, the dynamic field reference routine returns to the main
interpretation routine, block 100, without advancing the
program counter. As a result, the instruction with the rewrit-
ten numeric data reference gets reexecuted again.

On the other hand, if the data reference is determined to
be a numeric reference, branch 88a, the main interpretation
routine invokes the static field reference routine, block 94.
Upon invocation, the static field reference routine obtain the
data reference by the numeric reference, block 96. Upon
obtaining the data, the static field reference routine advances
the program counter, block 98, and returns to the main
interpretation routine, block 100.

Referring now to FIG. 8, a block diagram illustrating the
alteration and rewriting of data references under the present
invention in further detail is shown. As illustrated, a data
referencing instruction, such as the LOAD instruction 14",
is initially generated with a symbolic reference, e.g. “y”.
Upon its first interpretation in execution, the data referenc-
ing instruction, e.g. 14, is dynamically resolved and rewrit-
ten with a numeric reference, e.g. slot 2. Thus, except for the
first execution, the extra level of interpretation to resolve the
symbolic reference is no longer necessary. Therefore, under
the present invention, the “compiled” intermediate form
object code of a program achieves execution performance
substantially similar to that of the traditional compiled
object code, and yet it has the flexibility of not having to be
recompiled when the data objects it deals with are altered
like that of the traditional translated code, since data refer-
ence resolution is performed at the first execution of a
generated instruction comprising a symbolic reference.

While the present invention has been described in terms
of presently preferred and alternate embodiments, those
skilled in the art will recognize that the invention is not
limited to the embodiments described. The method and
apparatus of the present invention can be practiced with
modification and alteration within the spirit and scope of the
appended claims. The description is thus to be regarded as
illustrative instead of limiting on the present invention.

What is claimed is:

[1. In a computer system comprising a program in source
code form, a method for generating executable code for said
program and resolving data references in said generated
code, said method comprising the steps of:

a) generating executable code in intermediate form for
said program in source code form with data references
being made in said generated code on a symbolic basis,
said generated code comprising a plurality of instruc-
tions of said computer system;

6

b) interpreting said instructions, one at a time, in accor-
dance to a program execution control;
¢) resolving said symbolic references to corresponding
numeric references, replacing said symbolic references
5 with their corresponding numeric references, and con-
tinuing interpretation without advancing program
execution, as said symbolic references are encountered
while said instructions are being interpreted; and
d) obtaining data in accordance to said numeric
10 references, and continuing interpretation after advanc-
ing program execution, as said numeric references are
encountered while said instruction are being inter-
preted;

said steps b) through d) being performed iteratively and
interleaving.]

[2. The method as set forth in claim 1, wherein, said
program in source code form is implemented in source code
form of an object oriented programming language.]

[3. The method as set forth in claim 2, wherein said
programming language is C.]

[4. The method as set forth in claim 2, wherein, said
programming language is C++.]

[5. The method as set forth in claim 1, wherein, said
program execution control is a program counter said con-
tinuing interpretation in step c) is achieved by performing
said step b) after said ¢) without incrementing said program
counter; and

said continuing interpretation in said step d) is achieved
by performing said step b) after said d) after increment-
ing said program counter.]

[6. In a computer system comprising a program in source
code form, an apparatus for generating executable code for
said program and resolving data references in said generated
code, said apparatus comprising:

a) compilation means for receiving said program in source
code form and generating executable code in interme-
diate form for said program in source code form with
data references being made in said generated code on a
symbolic basis, said generated code comprising a plu-
rality of instructions of said computer system;

b) interpretation means for receiving said generated code
and interpreting said instructions, one at a time;

¢) dynamic reference handling means coupled to said
interpretation means for resolving said symbolic refer-

45 ences to corresponding numeric references, replacing
said symbolic references with their corresponding
numeric references, and continuing interpretation by
said interpretation means without advancing program
execution, as said symbolic references are encountered

50 while said instructions are being interpreted by said
interpretation means; and

d) static reference handling means coupled to said inter-
pretation means for obtaining data in accordance to said
numeric references, and continuing interpretation by

55 said interpretation means after advancing program
execution, as said numeric references are encountered
while said instruction are being interpreted by said
interpretation means;

said interpretation means, said dynamic reference han-

60 dling means, and said static reference handling means
performing their corresponding functions iteratively
and interleavingly.]

[7. The apparatus as set forth in claim 6, wherein, said
program in source code form is implemented in source code

65 form of an object oriented programming language.]

[8. The apparatus as set forth in claim 7, wherein, said

programming language is C.]

25

30

35

40

US RE38,104 E

7

[9. The apparatus as set forth in claim 7, wherein, said
programming language is C++.]

[10. The apparatus as set forth in claim 6, wherein, and
program execution control is a program counter.]

11. An apparatus comprising:

a memory containing intermediate form object code con-
stituted by a set of instructions, certain of said instruc-
tions containing one or more symbolic references; and

a processor configured to execute said instructions con-
taining one or more symbolic references by determining
a numerical reference corresponding to said symbolic
reference, storing said numerical references, and
obtaining data in accordance to said numerical refer-
ences.

12. A computer-readable medium containing instructions
for controlling a data processing system to perform a
method for interpreting intermediate form object code com-
prised of instructions, certain of said instructions containing
one or more symbolic references, said method comprising
the steps of:

interpreting said instructions in accordance with a pro-
gram execution control; and

resolving a symbolic reference in an instruction being
interpreted, said step of resolving said symbolic refer-
ence including the substeps of:
determining a numerical reference corresponding to

said symbolic reference, and
storing said numerical reference in a memory.
13. A computer-implemented method for executing
instructions, certain of said instructions containing one or
more symbolic references, said method comprising the steps
of:
resolving a symbolic reference in an instruction, said step
of resolving said symbolic reference including the sub-
steps of:
determining a numerical reference corresponding to said
symbolic reference, and
storing said numerical reference in a memory.
14. The method of claim 3, wherein said substep of storing
said numerical reference comprises the substep of replacing
said symbolic reference with said numerical reference.
15. The method of claim 3, wherein said step of resolving
said symbolic reference further comprises the substep of
executing said instruction containing said symbolic refer-
ence using the stored numerical reference.
16. The method of claim 3, wherein said step of resolving
said symbolic reference further comprises the substep of
advancing program execution control after said substep of
executing said instruction containing said symbolic refer-
ence.
17. In a computer system comprising a program, a method
for executing said program comprising the steps of:
receiving intermediate form object code for said program
with symbolic data references in certain instructions of
said intermediate form object code; and
converting the instructions of the intermediate form object
code having symbolic data references, said converting
step comprising the substeps of:
resolving said symbolic references fo corresponding
numerical references,

storing said numerical references, and

obtaining data in accordance fo said numerical refer-
ences.

18. A computer-implemented method for executing pro-
gram operations, each operation being comprised of a set of
instructions, certain of said instructions containing one or
more symbolic references, said method comprising the steps

of:

15

20

25

40

45

60

8

receiving a set of instructions reflecting an operation; and

performing the operation corresponding to the received
set of instructions, wherein at least one of said symbolic
references is resolved by determining a numerical
reference corresponding to said symbolic reference,
storing said numerical reference, and obtaining data in
accordance to said stored numerical reference.

19. A memory for use in executing a program by a

processor, the memory comprising:

intermediate form code containing symbolic field refer-
ences associated with an intermediate representation of
source code for the program,

the intermediate representation having been generated by
lexically analyzing the source code and parsing output
of said lexical analysis, and

wherein the symbolic field references are resolved by
determining a numerical reference corresponding fo
said symbolic reference, and storing said numerical
reference in a memory.

20. A computer-implemented method comprising:

receiving a program that comprises a set instructions
written in an intermediate form code;

replacing each instruction in the program with a symbolic
data reference with a new instruction containing a
numeric reference resulting from invocation of a
dynamic field reference routine to resolve the symbolic
data reference; and

executing the program by performing an operation in
accordance with each instruction or new instruction,
depending upon whether an instruction has been
replaced with a new instruction in accordance with the
replacing step.

2]. A data processing system, comprising:

a processor; and

a memory comprising a control program for causing the
processor to (i) receive a program that comprises a set
instructions written in an intermediate form code, (ii)
replace each instruction in the program with a sym-
bolic data reference with a new instruction containing
a numeric reference resulting from invocation of a
dynamic field reference routine to resolve the symbolic
data reference, and (iii) execute the program by per-
forming an operation in accordance with each instruc-
tion or new instruction, depending upon whether an
instruction has been replaced with a new instruction in
accordance with the replacing step.

22. An apparatus comprising:

a memory containing a compiled program in intermediate
form object code constituted by a set of instructions, at
least one of the instructions containing a symbolic
reference; and

a processor configured to execute the instruction by
determining a numerical reference corresponding fo
the symbolic reference, and performing an operation in
accordance with the instruction and data obtained in
accordance with the numerical reference without
recompiling the program or any portion thereof.

23. A computer-implemented method, comprising:

receiving a program with a set instructions written in an
intermediate form code;

analyzing each instruction of the program to determine
whether the instruction contains a symbolic reference
to a data object; and

executing the program, wherein when it was determined
that an instruction contains a symbolic reference, data

US RE38,104 E

9

from a storage location identified by a numeric refer-
ence correspoding to the symbolic reference is used
thereafter to perform an operation corresponding to
that instruction.

24. A computer-implemented method for executing a
program comprised of bytecodes, the method comprising:

determining immediately prior to execution whether a

bytecode of the program contains a symbolic data
reference;

when it is determined that the bytecode of the program

contains a symbolic data reference, invoking a dynamic
field reference routine to resolve the symbolic data
reference; and

executing thereafter the byfecode using stored data

located using a numeric reference resulting from the
resolution of the symbolic reference.

25. A data processing system, comprising:

a processor; and

a memory comprising a program comprised of bytecodes

and instructions for causing the processor to (i) deter-
mine immediately prior to execution of the program
whether a bytecode of the program contains a symbolic
data reference, (ii) when it is determined that the
bytecode of the program contains a symbolic data
reference, invoke a dynamic field reference routine to
resolve the symbolic data reference, and (iii) execute
thereafter the bytecode using stored data located using
a numeric reference resulting from the resolution of the
symbolic reference.

26. A computer program product containing instructions
for causing a computer to perform a method for executing a
program comprised of bytecodes, the method comprising:

determining immediately prior to execution whether a

bytecode of the program contains a symbolic data
reference;

when it is determined that the bytecode of the program

contains a symbolic data reference, invoking a dynamic
field reference routine to resolve the symbolic data
reference; and

executing thereafter the bytecode using stored data

located using a numeric reference resulting from the
resolution of the symbolic reference.

27. A computer-implemented method comprising:

receiving a program with a set of original instructions

wrilten in an intermediate form code;

generating a set of new instructions for the program that

contain numeric references resulting from invocation of
a routine to resolve any symbolic data references in the
set of original instructions; and

executing the program using the set of new instructions.

28. A data processing system, comprising:

a processor; and

a memory comprising a control program for causing the

processor to (i) receive a program with a set of original
instructions written in an intermediate form code, (ii)
generate a set of new instructions for the program that
contain numeric references resulting from invocation of
a routine to resolve any symbolic data references in the
set of original instructions, and (iii) executing the
program using the set of new instructions.

29. A computer program product containing instructions
for causing a computer to perform a method, the method
comprising:

receiving a program with a set of original instructions

wrilten in an intermediate form code;

10

15

20

25

30

35

40

45

50

60

65

10

generating a set of new instructions for the program that
contain numeric references resulting from invocation of
a routine to resolve any symbolic data references in the
set of original instructions; and

executing the program using the set of new instructions.

30. A computer-implemented method comprising:

receiving a program that comprises a set Instructions

written in an intermediate form code;

replacing each instruction in the program with a symbolic

data reference with a new instruction containing a
numeric reference resulting from invocation of a
dynamic field reference routine fo resolve the symbolic
data reference; and

executing the program by performing an operation in

accordance with each instruction or new instruction,
depending upon whether an instruction has been
replaced with a new instruction in accordance with the
replacing step.

31. A data processing system, comprising:

a processor; and

a memory comprising a control program for causing the

processor to (i) receive a program that comprises a set
instructions written in an intermediate form code, (ii)
replace each instruction in the program with a sym-
bolic data reference with a new instruction containing
a numeric reference resulting from invocation of a
dynamic field reference routing to resolve the symbolic
data reference, and (iii) execute the program by per-
forming an operation in accordance with each instruc-
tion or new instruction, depending upon whether an
instruction has been replaced with a new instruction in
accordance with the replacing step.

32. A computer program product containing control
instructions for causing a computer to perform a method, the
method comprising:

receiving a program that comprises a set instructions

written in an intermediate form code;

replacing each instruction in the program with a symbolic

data reference with a new instruction containing a
numeric reference resulting from invocation of a
dynamic field reference routine to resolve the symbolic
data reference; and

executing the program by performing an operation in

accordance with each instruction or new instruction,
depending upon whether an instruction has been
replaced with a new instruction in accordance with the
replacing step.

33. A computer-implemented method, comprising:

receiving a program with a set instructions written in an

intermediate form code;

analyzing each instruction of the program to determine

whether the instruction contains a symbolic reference
to a data object; and

executing the program, wherein when it was determined

that an instruction contains a symbolic reference, data
from a storage location identified by a numeric refer-
ence corresponding to the symbolic reference is used
thereafter to perform an operation corresponding fo
that instruction.

34. A data processing system, comprising:

a processor; and

a memory comprising a control program for causing the

processor to (i) receive a program with a set instruc-
tions written in an intermediate form code, (ii) analyze
each instruction of the program to determine whether

US RE38,104 E

11

the instruction contains a symbolic reference to a data
object, and (iii) execute the program, wherein when it
was determined that an instruction contains a symbolic
reference, data from a storage location identified by a
numeric reference corresponding to the symbolic ref-
erence is used thereafter to perform an operation
corresponding to that instruction.
35. A computer program product containing control
instructions for causing a computer to perform a method, the
method comprising:

receiving a program with a set instructions wrilten in an
intermediate form code;

analyzing each instruction of the program to determine
whether the instruction contains a symbolic reference
to a data object; and

executing the program, wherein when it was determined
that an instruction contains a symbolic reference, data
from a storage location identified by a numeric refer-
ence corresponding to the symbolic reference is used
thereafter fo perform an operation corresponding to
that instruction.

36. A computer-implemented method for executing a

program comprised of bytecodes, the method comprising:

determining whether a bytecode of the program contains
a symbolic reference;

when it is determined that the bytecode contains a sym-
bolic reference, invoking a dynamic field reference
routine to resolve the symbolic reference; and

performing an operation identified by the bytecode there-
after using data from a storage location identified by a
numeric reference resulting from the invocation of the
dynamic field reference routine.

37. A data processing system, comprising:

a processor; and

a memory comprising a program comprised of bytecodes
and instructions for causing the processor to (i) deter-
mine whether a bytecode of the program contains a
symbolic reference, (ii) when it is determined that the
bytecode contains a symbolic reference, invoke a
dynamic field reference routine fo resolve the symbolic
reference, and (iif) perform an operation identified by
the bytecode thereafter using data from a storage
location identified by a numeric reference resulting
from the invocation of the dynamic field reference
routine.

38. A computer program product containing instructions

for causing a computer to perform a method for executing a
program comprised of bytecodes, the method comprising:

10

15

20

25

30

35

40

12

determining whether a bytecode of the program contains
a symbolic reference;

when it is determined that the bytecode contains a sym-
bolic reference, invoking a dynamic field reference
routine to resolve the symbolic reference; and

performing an operation identified by the bytecode
therafter using data from a storage location identified
by a numeric reference resulting from the invocation of
the dynamic field reference routine.

39. A computer-implemented method comprising:
receiving a program formed of instructions written in an
intermediate form code compiled from source code;
analyzing each instruction to determine whether it con-

tains a symbolic field reference; and

executing the program by performing an operation iden-

tified by each instruction, wherein data from a storage
location identified by a numeric reference is thereafter
used for the operation when the instruction contains a
symbolic field reference, the numeric reference having
been resolved from the symbolic field reference.

40. A data processing system, comprising:

a processor; and

a memory comprising a control program for causing the

processor to (i) receive a program formed of instruc-
tions written in an intermediate form code compiled
from source code, (ii) analyze each instruction to
determine whether it contains a symbolic field
reference, and (iii) execute the program by performing
an operation identified by each instruction, wherein
data from a storage location identified by a numeric
reference is thereafter used for the operation when the
instruction contains a symbolic field reference, the
numeric reference having been resolved from the sym-
bolic field reference.

41. A computer program product containing control
instructions for causing a computer to perform a method, the
method comprising:

receiving a program formed of instructions written in an

intermediate form code compiled from source code;
analyzing each instruction to determine whether it con-
tains a symbolic field reference; and

executing the program by performing an operation iden-

tified by each instruction, wherein data from a storage
location identified by a numeric reference is used
thereafter for the operation when the instruction con-
tains a symbolic field reference, the numeric reference
having been resolved from the symbolic field reference.

